In the recent decades, the advance of information technology and abundant personal data facilitate the application of algorithmic personalized pricing. However, this leads to the growing concern of potential violation of privacy due to adversarial attack. To address the privacy issue, this paper studies a dynamic personalized pricing problem with \textit{unknown} nonparametric demand models under data privacy protection. Two concepts of data privacy, which have been widely applied in practices, are introduced: \textit{central differential privacy (CDP)} and \textit{local differential privacy (LDP)}, which is proved to be stronger than CDP in many cases. We develop two algorithms which make pricing decisions and learn the unknown demand on the fly, while satisfying the CDP and LDP gurantees respectively. In particular, for the algorithm with CDP guarantee, the regret is proved to be at most $\tilde O(T^{(d+2)/(d+4)}+\varepsilon^{-1}T^{d/(d+4)})$. Here, the parameter $T$ denotes the length of the time horizon, $d$ is the dimension of the personalized information vector, and the key parameter $\varepsilon>0$ measures the strength of privacy (smaller $\varepsilon$ indicates a stronger privacy protection). On the other hand, for the algorithm with LDP guarantee, its regret is proved to be at most $\tilde O(\varepsilon^{-2/(d+2)}T^{(d+1)/(d+2)})$, which is near-optimal as we prove a lower bound of $\Omega(\varepsilon^{-2/(d+2)}T^{(d+1)/(d+2)})$ for any algorithm with LDP guarantee.
翻译:近几十年来,信息技术的进步和丰富的个人数据有助于应用算法个人化定价。 但是,这导致人们日益关注因对抗性攻击而可能侵犯隐私的问题。 为解决隐私问题,本文研究了数据隐私保护下对非参数需求模型的动态个人化定价问题。 在实践中广泛应用的两个数据隐私概念是:\ textit{ 中央差异隐私(CDP)}和\ textitle{ 地方差异隐私(LDP)},在许多情况下,这证明比CDP强。 我们开发了两个算法,作出定价决定,并了解飞行上的未知需求,同时分别满足了CDP和LDP gurantees。 特别是,对于有CDP保证的算法,事实证明最多只有$tilde O(T+)(d+2)/(d+4)/varepalipelon}-1}T ⁇ d/(d+ ⁇ }当地隐私(d)}美元(d))美元(d) 美元(d+ ⁇ } 4} 美元 。 这里, 美元参数表示时间范围内的美元=美元 美元(美元), 美元和美元的基数值的基值的基值的基值的基值的基值的基底值的基值的基值的基值的基值的基值的基值的基值是其底值的基值的基值的基值的基值的基值的基值的基值的基值的基值的基值。