As an autonomous system performs a task, it should maintain a calibrated estimate of the probability that it will achieve the user's goal. If that probability falls below some desired level, it should alert the user so that appropriate interventions can be made. This paper considers settings where the user's goal is specified as a target interval for a real-valued performance summary, such as the cumulative reward, measured at a fixed horizon $H$. At each time $t \in \{0, \ldots, H-1\}$, our method produces a calibrated estimate of the probability that the final cumulative reward will fall within a user-specified target interval $[y^-,y^+].$ Using this estimate, the autonomous system can raise an alarm if the probability drops below a specified threshold. We compute the probability estimates by inverting conformal prediction. Our starting point is the Conformalized Quantile Regression (CQR) method of Romano et al., which applies split-conformal prediction to the results of quantile regression. CQR is not invertible, but by using the conditional cumulative distribution function (CDF) as the non-conformity measure, we show how to obtain an invertible modification that we call \textbf{P}robability-space \textbf{C}onformalized \textbf{Q}uantile \textbf{R}egression (PCQR). Like CQR, PCQR produces well-calibrated conditional prediction intervals with finite-sample marginal guarantees. By inverting PCQR, we obtain marginal guarantees for the probability that the cumulative reward of an autonomous system will fall within an arbitrary user-specified target intervals. Experiments on two domains confirm that these probabilities are well-calibrated.
翻译:当一个自主系统执行任务时, 它应该保持一个校准的概率估计, 它将实现用户目标的概率。 如果这一概率低于某种理想水平, 它应该提醒用户, 这样可以进行适当的干预。 本文会考虑用户目标被指定为真实价值的性能摘要目标间隔的设置, 例如, 累积奖励, 在一个固定的地平线上测量 $H $。 我们的起点是 Calgical Regrestition (CQR) 和 Al. 方法, 每一次都会对最终累积奖励在用户指定目标间隔 $[Y%-, y ⁇ ] 范围内的概率做出校正估计。 使用这个估计, 自动系统可以提高一个提醒, 如果概率降低在一个指定的阈值阈值下。 我们的预测中计算概率估计数。 我们的起始点是 QQR), 将分解的数值预测用于二次曲线回归的结果。 CQR是不可逆的, 但是通过使用固定的累积性 Q- Qral- bliveral 计算一个不连续的递制的计算结果。