The differential network (DN) analysis identifies changes in measures of association among genes under two or more experimental conditions. In this article, we introduce a Pseudo-value Regression Approach for Network Analysis (PRANA). This is a novel method of differential network analysis that also adjusts for additional clinical covariates. We start from mutual information (MI) criteria, followed by pseudo-value calculations, which are then entered into a robust regression model. This article assesses the model performances of PRANA in a multivariable setting, followed by a comparison to dnapath and DINGO in both univariable and multivariable settings through variety of simulations. Performance in terms of precision, recall, and F1 score of differentially connected (DC) genes is assessed. By and large, PRANA outperformed dnapath and DINGO, neither of which is equipped to adjust for available covariates such as patient-age. Lastly, we employ PRANA in a real data application from the Gene Expression Omnibus (GEO) database to identify DC genes that are associated with chronic obstructive pulmonary disease (COPD) to demonstrate its utility. To the best of our knowledge, this is the first attempt of utilizing a regression modeling for DN analysis by collective gene expression levels between two or more groups with the inclusion of additional clinical covariates. By and large, adjusting for available covariates improves accuracy of a DN analysis.


翻译:差异网络分析(DN) 差异网络分析(DN) 发现在两个或两个以上实验条件下基因之间关联度的变化。 在本条中,我们引入了网络分析Pseudo-value Regrestition 方法(PRANA) 。这是一种新型的差别网络分析方法,该方法也适应更多的临床共变。我们从相互信息标准(MI)开始,然后是伪值计算,然后输入一个强大的回归模型。本文章评估了PRANA在多变环境中的模型性能,随后通过多种模拟,在不可变和多变的环境中与dnaNGO进行比较。从精确性、回溯和F1分差异连接(DC)基因的成绩上进行评估。基本上,PRANA优于其他的dnapath and DINGO, 后者既不能适应现有的共变数模式,例如耐心。最后,我们用PRANA在GeneExmal Ombus(GEGE) 数据库中的一种真实数据应用中,以识别与长期阻碍性临床图解(C)相关的DC基因的精度分析相关基因, 也能够利用这一良性模型的共变化分析。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员