Virtual Reality (VR) is gaining ground in the robotics and teleoperation industry, opening new prospects as a novel computerized methodology to make humans interact with robots. In contrast with more conventional button-based teleoperations, VR allows users to use their physical movements to drive robotic systems in the virtual environment. The latest VR devices are also equipped with integrated eye-tracking, which constitutes an exceptional opportunity for monitoring users' workload online. However, such devices are fairly recent, and human factors have been consistently marginalized so far in telerobotics research. We thus covered these aspects by analyzing extensive behavioral data generated by 24 participants driving a simulated industrial robot in VR through a pick-and-place task. Users drove the robot via button-based and action-based controls and under low (single-task) and high (dual-task) mental demands. We collected self-reports, performance and eye-tracking data. Specifically, we asked i) how the interactive features of VR affect users' performance and workload, and additionally tested ii) the sensibility of diverse eye parameters in monitoring users' vigilance and workload throughout the task. Users performed faster and more accurately, while also showing a lower mental workload, when using an action-based VR control. Among the eye parameters, pupil size was the most resilient indicator of workload, as it was highly correlated with the self-reports and was not affected by the user's degree of physical motion in VR. Our results thus bring a fresh human-centric overview of human-robot interactions in VR, and systematically demonstrate the potential of VR devices for monitoring human factors in telerobotics contexts.
翻译:虚拟(VR) 正在机器人和远程操作行业中铺设实情(VR), 在机器人和远程操作行业中铺设了新的前景, 作为一种新型计算机化方法, 让人类与机器人发生互动。 与更传统的基于按钮的远程操作相比, VR 允许用户使用其物理运动在虚拟环境中驱动机器人系统。 最新的VR 设备也配备了综合眼跟踪功能, 这是监测用户在线工作量的绝佳机会。 然而,这些设备是相当近期的, 并且迄今为止在调频器研究中一直将人的因素边缘化。 因此,我们通过分析24名参与者在 VR 中驱动模拟工业机器人与机器人发生互动的广度行为数据。 用户通过基于按钮和基于行动的控制方式驱动机器人,在虚拟( Sing-task) 低( single-task) 和 高(dual-task) 的心理需求下, 也得到了整合。 我们收集了自我报告、 业绩和眼睛跟踪数据。 具体地问, VR 互动特征如何影响用户业绩和工作量, 和额外测试了 i), 在任务中, 用户的视觉(VLi) 快速(VLisal) 动作中, 运行中以更精确地展示了对用户的高度(to) 的高度(VL) 的自我) 动作的自我分析, 的高度(to) 的自我) 和高度(VL) 动作(VLi) 和高度(tobal) 的自我判断性(Ver) 操作性(Ver) 操作性(Ver) 操作性(to) 操作性(to) ) 操作性(to) 操作中) 和高度(to) 的自我) ) 和高度(to) 的自我) 动作(to) ) 动作(toal) 动作(toal) 操作(toal) 和高度(toal) 和高度(tobal) 和高度(toal) (toal) 动作(toal) 动作(to) 动作(to) ) 操作中) 动作(to) 的自我) 和高度(toal) 操作(to) 和高度(toal),