Component-Based Software Engineering (CBSE) is a methodology that assembles pre-existing, re-usable software components into new applications, which is particularly relevant for fast moving, data-intensive fields such as bioinformatics. While Perl was used extensively in this field until a decade ago, more recent applications opt for a Bioconductor/R or Python. This trend represents a significantly missed opportunity for the rapid generation of novel bioinformatic applications out of pre-existing components since Perl offers a variety of abstractions that can facilitate composition. In this paper, we illustrate the utility of Perl for CBSE through a combination of Object Oriented frameworks, the Perl Data Language and facilities for interfacing with non-Perl code through Foreign Function Interfaces and inlining of foreign source code. To do so, we enhance Polyester, a RNA sequencing simulator written in R, and edlib a fast sequence similarity search library based on the edit distance. The first case study illustrates the near effortless authoring of new, highly performant Perl modules for the simulation of random numbers using the GNU Scientific Library and PDL, and proposes Perl and Perl/C alternatives to the Python tool cutadapt that is used to "trim" polyA tails from biological sequences. For the edlib case, we leverage the power of metaclass programming to endow edlib with coarse, process based parallelism, through the Many Core Engine (MCE) module and fine grained parallelism through OpenMP, a C/C++/Fortran Application Programming Interface for shared memory multithreaded processing. These use cases provide proof-of-concept for the Bio::SeqAlignment framework, which can organize heterogeneous components in complex memory and command-line based workflows for the construction of novel bionformatic tools to analyze data from long-read sequencing, e.g. Nanopore, sequencing platforms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Perl 是一种高级、通用、直译式、动态的程序语言。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员