Sketch-based image manipulation is an interactive image editing task to modify an image based on input sketches from users. Existing methods typically formulate this task as a conditional inpainting problem, which requires users to draw an extra mask indicating the region to modify in addition to sketches. The masked regions are regarded as holes and filled by an inpainting model conditioned on the sketch. With this formulation, paired training data can be easily obtained by randomly creating masks and extracting edges or contours. Although this setup simplifies data preparation and model design, it complicates user interaction and discards useful information in masked regions. To this end, we investigate a new paradigm of sketch-based image manipulation: mask-free local image manipulation, which only requires sketch inputs from users and utilizes the entire original image. Given an image and sketch, our model automatically predicts the target modification region and encodes it into a structure agnostic style vector. A generator then synthesizes the new image content based on the style vector and sketch. The manipulated image is finally produced by blending the generator output into the modification region of the original image. Our model can be trained in a self-supervised fashion by learning the reconstruction of an image region from the style vector and sketch. The proposed method offers simpler and more intuitive user workflows for sketch-based image manipulation and provides better results than previous approaches. More results, code and interactive demo will be available at \url{https://zengxianyu.github.io/sketchedit}.


翻译:基于 Scletch 的图像操纵是一种交互式图像编辑任务, 目的是根据用户输入的草图修改图像。 现有方法通常将此项任务设计成一个有条件的油漆问题, 要求用户在草图之外再绘制一个额外的遮罩, 显示区域修改。 遮蔽区域被视为洞, 由素描上的一个涂鸦模型来填充。 有了这个配对培训数据, 可以通过随机创建遮罩和提取边框或轮廓来轻易获得。 虽然这个设置简化了数据编制和模型设计, 但它使用户互动和丢弃了在遮蔽区域有用的信息。 为此, 我们调查基于素描图的图像操纵新模式: 无遮罩本地图像操作, 只需要用户的草图输入草图, 并使用全部原始图像的油漆模型和草图。 我们的模型自动预测目标修改区域, 并将它编成结构风格矢量矢量矢量矢量矢量矢量矢量矢量和素设计。 操纵图像最终通过将发电机输出输出输出输出输出输出到原始图像的修改区域。 我们经过培训的模型将提供一个更精确的版本, 将提供一个更精确的矢量矢量图像的模型, 将提供更精确的模型, 将提供更精确的版本的版本。 将提供更精确的版本的版本的版本的版本的图像的模型, 。 将提供一个的模型将提供一个模型将提供更精确的图像。 将提供更精确的模型将提供更精确的图像。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
42+阅读 · 2021年8月12日
专知会员服务
43+阅读 · 2021年7月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员