Consider the exploration in sparse-reward or reward-free environments, such as Montezuma's Revenge. The curiosity-driven paradigm dictates an intuitive technique: At each step, the agent is rewarded for how much the realized outcome differs from their predicted outcome. However, using predictive error as intrinsic motivation is prone to fail in stochastic environments, as the agent may become hopelessly drawn to high-entropy areas of the state-action space, such as a noisy TV. Therefore it is important to distinguish between aspects of world dynamics that are inherently predictable and aspects that are inherently unpredictable: The former should constitute a source of intrinsic reward, whereas the latter should not. In this work, we study a natural solution derived from structural causal models of the world: Our key idea is to learn representations of the future that capture precisely the unpredictable aspects of each outcome -- not any more, not any less -- which we use as additional input for predictions, such that intrinsic rewards do vanish in the limit. First, we propose incorporating such hindsight representations into the agent's model to disentangle "noise" from "novelty", yielding Curiosity in Hindsight: a simple and scalable generalization of curiosity that is robust to all types of stochasticity. Second, we implement this framework as a drop-in modification of any prediction-based exploration bonus, and instantiate it for the recently introduced BYOL-Explore algorithm as a prime example, resulting in the noise-robust "BYOL-Hindsight". Third, we illustrate its behavior under various stochasticities in a grid world, and find improvements over BYOL-Explore in hard-exploration Atari games with sticky actions. Importantly, we show SOTA results in exploring Montezuma with sticky actions, while preserving performance in the non-sticky setting.
翻译:考虑在微薄的、无报酬的环境中探索, 比如 Montezuma 的Revenge 。 由好奇心驱动的范式需要一种直观的技巧: 每一步, 代理商都会因为实现的结果与预测的结果有多么不同而得到奖励。 但是, 使用预测错误作为内在动机在随机环境中容易失败, 因为代理商可能会毫无希望地被吸引到国家行动空间的高热带地区, 比如一个吵闹的电视。 因此, 有必要区分世界动态中固有的可预测和内在无法预测的方面: 前者应该成为内在报酬的来源, 而后者不应该。 在这项工作中, 我们研究从世界结构性因果关系模型中得出的自然解决方案: 我们的关键想法是学习未来的表现, 准确捕捉每个结果的不可预测的方面 -- -- 而不是更多, 因为它可能毫无希望地被吸引, 比如, 内在报酬在极限中会消失。 首先, 我们提议在代理商的模型中加入这种直观的表达方式, 将“ 错误的” 从“ 错误的” 开始, 而后期的“ 解释 ” 解释, 导致直观的“ 直观的“ ” 直观的“ 直观” 的“ 的“ 的” 实现” 的“ 的“ 的” 的“ 的” 的” 的“直观” 的” 的“直观” 的“ 我们的” 显示的“直观” 的” 的“ 的” 的“直观” 的“直观” 显示的“直观” 的“直观” 的“直观” 的“直观” 显示的” 的” 的“直观” 显示的“直观” 的“直观” 的“直观” 的“直观” ” 的“ 的” 的“ ” ” ” ” ” ” 的“直观” ” 的“直观” 的“直观” 的“直观” 的“直观” 的“直观” 的“直观” 的“直观” 的” 的“直观” 的“直观” 显示” ” ” 的“直观” 的“直观” 的”