Benefiting from the injection of human prior knowledge, graphs, as derived discrete data, are semantically dense so that models can efficiently learn the semantic information from such data. Accordingly, graph neural networks (GNNs) indeed achieve impressive success in various fields. Revisiting the GNN learning paradigms, we discover that the relationship between human expertise and the knowledge modeled by GNNs still confuses researchers. To this end, we introduce motivating experiments and derive an empirical observation that the human expertise is gradually learned by the GNNs in general domains. By further observing the ramifications of introducing expertise logic into graph representation learning, we conclude that leading the GNNs to learn human expertise can improve the model performance. By exploring the intrinsic mechanism behind such observations, we elaborate the Structural Causal Model for the graph representation learning paradigm. Following the theoretical guidance, we innovatively introduce the auxiliary causal logic learning paradigm to improve the model to learn the expertise logic causally related to the graph representation learning task. In practice, the counterfactual technique is further performed to tackle the insufficient training issue during optimization. Plentiful experiments on the crafted and real-world domains support the consistent effectiveness of the proposed method.


翻译:通过注入人类先前的知识,从离散数据中得出的图表具有内在密度,使模型能够有效地从这些数据中学习语义信息。因此,图形神经网络(GNN)确实在各个领域取得了令人印象深刻的成功。我们重新研究GNN学习模式,发现人类专门知识与GNN所建知识之间的关系仍然使研究人员感到困惑。为此,我们引入激励性实验,并得出经验性观察,即GNN在一般领域逐步学习人类专门知识。通过进一步观察将专门知识逻辑引入图形代表学习过程的影响,我们得出结论认为,引导GNNN学习人类专门知识可以改进模型的性能。通过探索这些观察背后的内在机制,我们为图形代表学习模式制定了结构性Causal模型。根据理论指导,我们创新地引入了附带性因果关系逻辑学习模式,以改进与图形代表学习任务相关的专门知识逻辑因果关系。在实践中,通过进一步运用反事实性技术,解决在优化过程中培训不足的问题。在巧妙和现实世界领域进行的灵活实验支持了拟议方法的一贯有效性。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月14日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员