In this chapter, we review variance selection for time-varying parameter (TVP) models for univariate and multivariate time series within a Bayesian framework. We show how both continuous as well as discrete spike-and-slab shrinkage priors can be transferred from variable selection for regression models to variance selection for TVP models by using a non-centered parametrization. We discuss efficient MCMC estimation and provide an application to US inflation modeling.
翻译:在本章中,我们审查巴伊西亚框架内单象值和多变时间序列时间变化参数(TVP)模型的差异选择。我们展示了如何将连续的和离散的峰值和滑块缩缩前科从回归模型的可变选择转换到使用非环球对称法的TVP模型的差异选择。我们讨论了高效的MCMC估算,并为美国的通货膨胀模型模型提供了应用。