English news headlines form a register with unique syntactic properties that have been documented in linguistics literature since the 1930s. However, headlines have received surprisingly little attention from the NLP syntactic parsing community. We aim to bridge this gap by providing the first news headline corpus of Universal Dependencies annotated syntactic dependency trees, which enables us to evaluate existing state-of-the-art dependency parsers on news headlines. To improve English news headline parsing accuracies, we develop a projection method to bootstrap silver training data from unlabeled news headline-article lead sentence pairs. Models trained on silver headline parses demonstrate significant improvements in performance over models trained solely on gold-annotated long-form texts. Ultimately, we find that, although projected silver training data improves parser performance across different news outlets, the improvement is moderated by constructions idiosyncratic to outlet.
翻译:英国新闻头条形成了一个具有自1930年代以来在语言文献中记载的独特综合特性的登记册。然而,国家语言规划局综合分析社区对头条的注意却少得惊人。我们的目标是通过提供第一个新闻头条《普遍依赖》头条丛书来弥补这一差距。 我们的目标是通过提供第一个新闻头条《普遍依赖》附带说明的副树来弥补这一差距,这使我们能够评估新闻头条上现有的最先进的依赖性分析者。为了改进英国新闻头条对通俗理解,我们开发了一种投影方法,从未贴标签的新闻头条条目领先的一对中获取银色培训数据。在银头条上培训的模型显示,在只受过黄金附加说明长式文本培训的模型上取得了显著的成绩。 最后,我们发现,尽管预测的银培训数据改善了不同新闻网点的读者业绩,但改进工作却通过建筑特制的超语管来进行。