We present a framework for automatically structuring and training fast, approximate, deep neural surrogates of stochastic simulators. Unlike traditional approaches to surrogate modeling, our surrogates retain the interpretable structure and control flow of the reference simulator. Our surrogates target stochastic simulators where the number of random variables itself can be stochastic and potentially unbounded. Our framework further enables an automatic replacement of the reference simulator with the surrogate when undertaking amortized inference. The fidelity and speed of our surrogates allow for both faster stochastic simulation and accurate and substantially faster posterior inference. Using an illustrative yet non-trivial example we show our surrogates' ability to accurately model a probabilistic program with an unbounded number of random variables. We then proceed with an example that shows our surrogates are able to accurately model a complex structure like an unbounded stack in a program synthesis example. We further demonstrate how our surrogate modeling technique makes amortized inference in complex black-box simulators an order of magnitude faster. Specifically, we do simulator-based materials quality testing, inferring safety-critical latent internal temperature profiles of composite materials undergoing curing.
翻译:我们提出了一个自动构建和培训快速、近似、深神经模拟器的框架。 与传统的替代模型模型模型方法不同, 我们的代机器人保留了参考模拟器的可解释结构和控制流。 我们的代机器人的目标是随机变量数量本身可以随机随机变数本身可以随机和潜在不受限制的随机模拟器。 我们的框架进一步允许在进行振动推断时自动将参考模拟器替换为代孕器。 我们的代机器人的忠诚和速度既可以更快地进行模拟,也可以准确和大大加快远地点的远地点推断推断。 我们用一个说明性但非三重的例子来展示我们的代机器人是否有能力精确地模拟一个随机变数本身的随机变数的概率程序。 我们接着用一个表明我们的代机器人能够在一个程序合成示例中精确地模拟一个复杂的结构, 就像一个无约束的叠叠叠叠合堆。 我们进一步展示了我们的代机器人技术如何在复杂的黑箱质量测试中进行快速的折叠式变压。 我们进一步展示了我们的代模型技术如何在复杂的深层材料中进行快速的变压。