Named entity recognition (NER) is an essential task in natural language processing, but the internal mechanism of most NER models is a black box for users. In some high-stake decision-making areas, improving the interpretability of an NER method is crucial but challenging. In this paper, based on the existing Deterministic Talmudic Public announcement logic (TPK) model, we propose a novel binary tree model (called BTPK) and apply it to two widely used Bi-RNNs to obtain BTPK-based interpretable ones. Then, we design a counterfactual verification module to verify the BTPK-based learning method. Experimental results on three public datasets show that the BTPK-based learning outperform two classical Bi-RNNs with self-attention, especially on small, simple data and relatively large, complex data. Moreover, the counterfactual verification demonstrates that the explanations provided by the BTPK-based learning method are reasonable and accurate in NER tasks. Besides, the logical reasoning based on BTPK shows how Bi-RNNs handle NER tasks, with different distance of public announcements on long and complex sequences.
翻译:在自然语言处理中,命名实体识别(NER)是一项基本任务,但大多数NER模型的内部机制是用户的黑盒。在一些高层次决策领域,改进NER方法的解释性至关重要,但具有挑战性。在本文中,基于现有的确定性、简单数据和相对较大、复杂数据等公共公告逻辑(TPK)模型,我们提出了一个新颖的双树模型(称为BTPK),并将其应用于两个广泛使用的Bi-RNNs,以获得基于BTPK的可解释性。然后,我们设计了一个反事实核查模块,以核实基于BTPK的学习方法。三个公共数据集的实验结果表明,BTPK学习结果超越了两种具有自我注意的典型双-RNNs,特别是小型、简单数据和相对较大、较复杂的数据。此外,反事实核查表明,基于BTPK的学习方法所提供的解释在NER任务中是合理和准确的。此外,基于BTPK的逻辑推理表明BTPK的B-RNNNSs是如何处理NER任务的,在长序和复杂顺序上的公共公告距离不同。