Synaptic communication is a natural Molecular Communication (MC) system which may serve as a blueprint for the design of synthetic MC systems. In particular, it features highly specialized mechanisms to enable inter-symbol interference (ISI)-free and energy efficient communication. The understanding of synaptic MC is furthermore critical for disruptive innovations in the context of brain-machine interfaces. However, the physical modeling of synaptic MC is complicated by the possible saturation of the molecular receiver arising from the competition of postsynaptic receptors for neurotransmitters. Saturation renders the system behavior nonlinear and is commonly neglected in existing analytical models. In this work, we propose a novel model for receptor saturation in terms of a nonlinear, state-dependent boundary condition for Fick's diffusion equation. We solve the resulting boundary-value problem using an eigenfunction expansion of the Laplace operator and the incorporation of the receiver memory as feedback system into the corresponding state-space description. The presented solution is numerically stable and computationally efficient. Furthermore, the proposed model is validated with particle-based stochastic computer simulations.
翻译:合成分子通信是一种天然的分子通信系统,可以作为设计合成MC系统的蓝图,特别是它具有高度专业化的机制,能够使符号干扰(ISI)不受影响和节能通信。对合成分子通信的了解对于大脑-机器界面的干扰性创新来说更为关键。但是,合成分子通信的物理建模由于神经传输器的后发受体竞争产生的分子接收器可能饱和而变得复杂。饱和使系统不线性,并且在现有的分析模型中经常被忽视。在这项工作中,我们提出了一个新颖的受体饱和模式,用非线性、国家依赖的边界条件来取代Fick的传播方程式。我们用拉比操作器操作器的密封功能扩展和将接收存储作为反馈系统纳入相应的状态空间描述中,从而解决由此产生的边界价值问题。所提出的解决办法是数字稳定和计算有效的。此外,拟议的模型与基于粒子的模拟计算机模拟模型进行了验证。