Synaptic communication is a natural Molecular Communication (MC) system which may serve as a blueprint for the design of synthetic MC systems. In particular, it features highly specialized mechanisms to enable inter-symbol interference (ISI)-free and energy efficient communication. The understanding of synaptic MC is furthermore critical for disruptive innovations in the context of brain-machine interfaces. However, the physical modeling of synaptic MC is complicated by the possible saturation of the molecular receiver arising from the competition of postsynaptic receptors for neurotransmitters. Saturation renders the system behavior nonlinear and is commonly neglected in existing analytical models. In this work, we propose a novel model for receptor saturation in terms of a nonlinear, state-dependent boundary condition for Fick's diffusion equation. We solve the resulting boundary-value problem using an eigenfunction expansion of the Laplace operator and the incorporation of the receiver memory as feedback system into the corresponding state-space description. The presented solution is numerically stable and computationally efficient. Furthermore, the proposed model is validated with particle-based stochastic computer simulations.


翻译:合成分子通信是一种天然的分子通信系统,可以作为设计合成MC系统的蓝图,特别是它具有高度专业化的机制,能够使符号干扰(ISI)不受影响和节能通信。对合成分子通信的了解对于大脑-机器界面的干扰性创新来说更为关键。但是,合成分子通信的物理建模由于神经传输器的后发受体竞争产生的分子接收器可能饱和而变得复杂。饱和使系统不线性,并且在现有的分析模型中经常被忽视。在这项工作中,我们提出了一个新颖的受体饱和模式,用非线性、国家依赖的边界条件来取代Fick的传播方程式。我们用拉比操作器操作器的密封功能扩展和将接收存储作为反馈系统纳入相应的状态空间描述中,从而解决由此产生的边界价值问题。所提出的解决办法是数字稳定和计算有效的。此外,拟议的模型与基于粒子的模拟计算机模拟模型进行了验证。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
7+阅读 · 2017年7月11日
Arxiv
0+阅读 · 2021年11月21日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
相关资讯
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
7+阅读 · 2017年7月11日
Top
微信扫码咨询专知VIP会员