Neural Radiance Fields (NeRFs) are a very recent and very popular approach for the problems of novel view synthesis and 3D reconstruction. A popular scene representation used by NeRFs is to combine a uniform, voxel-based subdivision of the scene with an MLP. Based on the observation that a (sparse) point cloud of the scene is often available, this paper proposes to use an adaptive representation based on tetrahedra and a Delaunay representation instead of the uniform subdivision or point-based representations. We show that such a representation enables efficient training and leads to state-of-the-art results. Our approach elegantly combines concepts from 3D geometry processing, triangle-based rendering, and modern neural radiance fields. Compared to voxel-based representations, ours provides more detail around parts of the scene likely to be close to the surface. Compared to point-based representations, our approach achieves better performance.
翻译:神经辐射场 (NeRFs) 是最近非常流行的用于新视角合成和三维重建问题的方法。通过将场景进行均匀体素分割与 MLP 结合的方式是 NeRFs 中常用的场景表示方法。本文观察到场景的稀疏点云通常是可用的,因此提出了一种基于四面体和 Delaunay 表示的自适应表示方法,取代均匀分割或点表示法。研究表明这种表示方法实现了高效的训练,并导致了最先进的结果。我们的方法巧妙地结合了 3D 几何处理、基于三角形的渲染和现代神经辐射场的概念。与基于体素的表示相比,我们的方法提供了更多的细节,使其更加适用于场景表面上的部分。与点表示法相比,我们的方法实现了更好的性能。