We present an $\tilde O(m+n^{1.5})$-time randomized algorithm for maximum cardinality bipartite matching and related problems (e.g. transshipment, negative-weight shortest paths, and optimal transport) on $m$-edge, $n$-node graphs. For maximum cardinality bipartite matching on moderately dense graphs, i.e. $m = \Omega(n^{1.5})$, our algorithm runs in time nearly linear in the input size and constitutes the first improvement over the classic $O(m\sqrt{n})$-time [Dinic 1970; Hopcroft-Karp 1971; Karzanov 1973] and $\tilde O(n^\omega)$-time algorithms [Ibarra-Moran 1981; Mucha-Sankowski 2004] (where currently $\omega\approx 2.373$). On sparser graphs, i.e. when $m = n^{9/8 + \delta}$ for any constant $\delta>0$, our result improves upon the recent advances of [Madry 2013] and [Liu-Sidford 2020b, 2020a] which achieve an $\tilde O(m^{4/3+o(1)})$ runtime. We obtain these results by combining and advancing recent lines of research in interior point methods (IPMs) and dynamic graph algorithms. First, we simplify and improve the IPM of [v.d.Brand-Lee-Sidford-Song 2020], providing a general primal-dual IPM framework and new sampling-based techniques for handling infeasibility induced by approximate linear system solvers. Second, we provide a simple sublinear-time algorithm for detecting and sampling high-energy edges in electric flows on expanders and show that when combined with recent advances in dynamic expander decompositions, this yields efficient data structures for maintaining the iterates of both [v.d.Brand et al.] and our new IPMs. Combining this general machinery yields a simpler $\tilde O(n \sqrt{m})$ time algorithm for matching based on the logarithmic barrier function, and our state-of-the-art $\tilde O(m+n^{1.5})$ time algorithm for matching based on the [Lee-Sidford 2014] barrier (as regularized in [v.d.Brand et al.]).
翻译:我们展示了 $\ tilde O( m+n===1.5}) 用于最大基点双端对齐及相关问题( 如转口、负重量最短路径和最佳运输) 的 美元- 置换, 美元- node 图形 。 对于中密度图形的最大基点双向匹配, 即 $ =\ omga( n=1.5}) 美元, 我们的算法在投入大小中时间接近线性, 与经典的 $( m\ sr t) 双端对齐( ord) 的 任意基点对 O- 平面对齐( 例如转口、 负重量最短的路程最短的路程和相关问题 ) 。 当 美元 ( = n= nqal- fal_ + delta} 时, 我们的S- liveralta > commodelal_ us lader a brodeal- max lax a promoal lax lax a promodeal- dal- destal laftal- promotions a lax and a mod.