Recent works on pose-based gait recognition have demonstrated the potential of using such simple information to achieve results comparable to silhouette-based methods. However, the generalization ability of pose-based methods on different datasets is undesirably inferior to that of silhouette-based ones, which has received little attention but hinders the application of these methods in real-world scenarios. To improve the generalization ability of pose-based methods across datasets, we propose a Generalized Pose-based Gait recognition (GPGait) framework. First, a Human-Oriented Transformation (HOT) and a series of Human-Oriented Descriptors (HOD) are proposed to obtain a unified pose representation with discriminative multi-features. Then, given the slight variations in the unified representation after HOT and HOD, it becomes crucial for the network to extract local-global relationships between the keypoints. To this end, a Part-Aware Graph Convolutional Network (PAGCN) is proposed to enable efficient graph partition and local-global spatial feature extraction. Experiments on four public gait recognition datasets, CASIA-B, OUMVLP-Pose, Gait3D and GREW, show that our model demonstrates better and more stable cross-domain capabilities compared to existing skeleton-based methods, achieving comparable recognition results to silhouette-based ones. The code will be released.
翻译:最近关于基于表面的轨迹识别的工作表明,有可能利用这种简单信息实现与以浅色为基础的方法相类似的结果,然而,在不同数据集上基于表面的方法的普及能力显然比基于浅色的数据集的普及能力低,这显然比基于浅色的数据集的普及能力低,后者很少受到注意,但妨碍这些方法在现实世界情景中的应用。为了提高跨数据集基于表面的方法的普及能力,我们提议了一个基于一般浮观的Gait框架。首先,一个面向人类的转变(HOT)和一系列面向人类的描述仪(HOD),以获得具有歧视性的多功能的统一的外观代表能力。随后,鉴于HOT和HOD之后的统一代表性略有不同,因此,对于网络在关键点之间找出基于表面的基于表面的方法的概括识别能力,我们提议了一个基于部分的图谱分布网(PAGCN),以便高效的图形分割和地方的全球空间特征提取。 四个面向公众的图像描述模型的实验,四个公众的跨面图象识别、比较性数据显示我们现有的可比较性数据的能力。</s>