Federated learning (FL), as a type of collaborative machine learning framework, is capable of preserving private data from mobile terminals (MTs) while training the data into useful models. Nevertheless, from a viewpoint of information theory, it is still possible for a curious server to infer private information from the shared models uploaded by MTs. To address this problem, we first make use of the concept of local differential privacy (LDP), and propose a user-level differential privacy (UDP) algorithm by adding artificial noise to the shared models before uploading them to servers. According to our analysis, the UDP framework can realize $(\epsilon_{i}, \delta_{i})$-LDP for the $i$-th MT with adjustable privacy protection levels by varying the variances of the artificial noise processes. We then derive a theoretical convergence upper-bound for the UDP algorithm. It reveals that there exists an optimal number of communication rounds to achieve the best learning performance. More importantly, we propose a communication rounds discounting (CRD) method. Compared with the heuristic search method, the proposed CRD method can achieve a much better trade-off between the computational complexity of searching and the convergence performance. Extensive experiments indicate that our UDP algorithm using the proposed CRD method can effectively improve both the training efficiency and model quality for the given privacy protection levels.
翻译:联邦学习(FL)作为一种合作机器学习框架,能够保存移动终端(MTs)的私人数据,同时将数据培训成有用的模型。然而,从信息理论的角度来看,一个好奇的服务器仍然有可能从MTs上传的共享模型中推断出私人信息。为了解决这一问题,我们首先利用当地差异隐私概念,在将共享模型上传到服务器之前,在共享模型中添加人为噪音,从而提出用户一级差异隐私算法。根据我们的分析,UDP框架可以实现$(epsilon ⁇ i},\delta ⁇ i}($-LDP)为第一位具有可调整隐私保护水平的美元MTs,通过改变人工噪音过程的差异,仍然有可能从该模型中推断出私人信息。我们首先利用当地差异隐私权概念(LDP)概念,然后提出用户一级差异(UDP)的保密性算法,在将共享模型上添加人工噪音,从而提出最佳程度的交流回合。我们建议采用交流回合(CRD)折扣法。与超常搜索方法相比,拟议的CRD方法可以有效地利用深度贸易水平来改进我们的拟议标准。