Transformers have achieved remarkable performance in widespread fields, including natural language processing, computer vision and graph mining. However, vanilla Transformer architectures have not yielded promising improvements in the Knowledge Graph (KG) representations, where the translational distance paradigm dominates this area. Note that vanilla Transformer architectures struggle to capture the intrinsically heterogeneous structural and semantic information of knowledge graphs. To this end, we propose a new variant of Transformer for knowledge graph representations dubbed Relphormer. Specifically, we introduce Triple2Seq which can dynamically sample contextualized sub-graph sequences as the input to alleviate the heterogeneity issue. We propose a novel structure-enhanced self-attention mechanism to encode the relational information and keep the semantic information within entities and relations. Moreover, we utilize masked knowledge modeling for general knowledge graph representation learning, which can be applied to various KG-based tasks including knowledge graph completion, question answering, and recommendation. Experimental results on six datasets show that Relphormer can obtain better performance compared with baselines. Code is available in https://github.com/zjunlp/Relphormer.


翻译:然而,香草变异器结构在知识图(KG)的演示中并没有带来有希望的改善,因为翻译距离范式主导了这个领域。请注意,香草变异器结构在努力捕捉知识图中固有的各异结构和语义信息。为此,我们提议了一个新的变异器变异器,用于知识图示(以rebbbed Relphormer为代号)的图示。具体地说,我们引入了Triple2Seq,可以动态地样样样背景子图序列,作为缓解异质问题的投入。我们提议了一个创新的结构强化自省机制,用于编码关系信息,并将语义信息保存在实体和关系中。此外,我们使用遮掩的知识模型,用于一般知识图示学,这可以应用于基于KG的各种任务,包括知识图的完成、问题回答和建议。六个数据集的实验结果显示,Relphormer可以比基线取得更好的性能。代码可在 http://giuthurphr/regunal.code中查阅。</s>

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
123+阅读 · 2020年9月8日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员