Given a graph $G$ and two independent sets of $G$, the independent set reconfiguration problem asks whether one independent set can be transformed into the other by moving a single vertex at a time, such that at each intermediate step we have an independent set of $G$. We study the complexity of this problem for $H$-free graphs under the token sliding and token jumping rule. Our contribution is twofold. First, we prove a reconfiguration analogue of Alekseev's theorem, showing that the problem is PSPACE-complete unless $H$ is a path or a subdivision of the claw. We then show that under the token sliding rule, the problem admits a polynomial-time algorithm if the input graph is fork-free.
翻译:暂无翻译