Quantum Channel Discrimination (QCD) presents a fundamental task in quantum information theory, with critical applications in quantum reading, illumination, data-readout and more. The extension to multiple quantum channel discrimination has seen a recent focus to characterise potential quantum advantage associated with quantum enhanced discriminatory protocols. In this paper, we study thermal imaging as an environment localisation task, in which thermal images are modelled as ensembles of Gaussian phase insensitive channels with identical transmissivity, and pixels possess properties according to background (cold) or target (warm) thermal channels. Via the teleportation stretching of adaptive quantum protocols, we derive ultimate limits on the precision of pattern classification of abstract, binary thermal image spaces, and show that quantum enhanced strategies may be used to provide significant quantum advantage over known optimal classical strategies. The environmental conditions and necessary resources for which advantage may be obtained are studied and discussed. We then numerically investigate the use of quantum enhanced statistical classifiers, in which quantum sensors are used in conjunction with machine learning image classification methods. Proving definitive advantage in the low loss regime, this work motivates the use of quantum enhanced sources for short-range thermal imaging and detection techniques for future quantum technologies.


翻译:量子频道歧视(QCD)是量子信息理论中的一项基本任务,在量子读数、照明、数据读数等中具有关键应用。多量子频道歧视的扩展最近显示了一个重点,以说明与量子强化歧视性协议相关的潜在量子优势。在本文件中,我们研究热成像是一项环境本地化任务,其中热成像模拟成像为高萨级敏感频道的集合,具有相同的传输性,像素具有根据背景(冷)或目标(温)热信道的特性。通过适应性量子协议的远程传输延伸,我们对抽象、二元热图像空间的格局分类的精确度提出了最终限制,并表明量子强化战略可能被用来为已知的最佳典型战略提供重大的量子优势。研究并讨论了可能获得优势的环境条件和必要资源。然后,我们用数字式强化的统计分类器使用量子传感器,与机器学习图像分类方法一起使用。在低损率系统中展示明确优势,这项工作促使利用量子强化源用于短程热成像技术。

0
下载
关闭预览

相关内容

模式识别是一个成熟的、令人兴奋的、快速发展的领域,它支撑着计算机视觉、图像处理、文本和文档分析以及神经网络等相关领域的发展。它与机器学习非常相似,在生物识别、生物信息学、多媒体数据分析和最新的数据科学等新兴领域也有应用。模式识别(Pattern Recognition)杂志成立于大约50年前,当时该领域刚刚出现计算机科学的早期。在这期间,它已大大扩大。只要这些论文的背景得到了清晰的解释并以模式识别文献为基础,该杂志接受那些对模式识别理论、方法和在任何领域的应用做出原创贡献的论文。 官网地址:http://dblp.uni-trier.de/db/conf/par/
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
123+阅读 · 2020年9月8日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年6月25日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员