In the era of big data, deep learning has become an increasingly popular topic. It has outstanding achievements in the fields of image recognition, object detection, and natural language processing et al. The first priority of deep learning is exploiting valuable information from a large amount of data, which will inevitably induce privacy issues that are worthy of attention. Presently, several privacy-preserving deep learning methods have been proposed, but most of them suffer from a non-negligible degradation of either efficiency or accuracy. Negative database (\textit{NDB}) is a new type of data representation which can protect data privacy by storing and utilizing the complementary form of original data. In this paper, we propose a privacy-preserving deep learning method named NegDL based on \textit{NDB}. Specifically, private data are first converted to \textit{NDB} as the input of deep learning models by a generation algorithm called \textit{QK}-hidden algorithm, and then the sketches of \textit{NDB} are extracted for training and inference. We demonstrate that the computational complexity of NegDL is the same as the original deep learning model without privacy protection. Experimental results on Breast Cancer, MNIST, and CIFAR-10 benchmark datasets demonstrate that the accuracy of NegDL could be comparable to the original deep learning model in most cases, and it performs better than the method based on differential privacy.


翻译:在海量数据时代,深层次学习已成为一个越来越受欢迎的话题。在图像识别、物体探测和自然语言处理等领域,深层次学习取得了杰出成就。深层次学习的第一优先事项是利用大量数据提供的宝贵信息,这不可避免地会引起值得注意的隐私问题。目前,提出了若干保护隐私的深层次学习方法,但大多数方法都存在效率或准确性不可忽略的退化。负值数据库(\ textit{NDB})是一种新型的数据代表,可以通过储存和使用原始数据的补充形式来保护数据隐私。在本文中,我们提出一个名为NegDL的隐私保护深层学习方法,根据\ textitit{NDB} 以NegDL 为基础。具体地说,私人数据首先转换为textit{NDB},作为代算法的深层次学习模型,称为\ textitilitle{K}-hiden 算法,然后为培训与推导。我们证明,NegDL的计算复杂度深层次的深层次学习方法是NegDL的最深层的精确性研究方法,而测试的原始的精确性记录和CAR的原始数据是没有原始的原始学习模式。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
38+阅读 · 2020年3月10日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
12+阅读 · 2019年3月14日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
38+阅读 · 2020年3月10日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
12+阅读 · 2019年3月14日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员