Event cameras respond to scene dynamics and offer advantages to estimate motion. Following recent image-based deep-learning achievements, optical flow estimation methods for event cameras have rushed to combine those image-based methods with event data. However, it requires several adaptations (data conversion, loss function, etc.) as they have very different properties. We develop a principled method to extend the Contrast Maximization framework to estimate optical flow from events alone. We investigate key elements: how to design the objective function to prevent overfitting, how to warp events to deal better with occlusions, and how to improve convergence with multi-scale raw events. With these key elements, our method ranks first among unsupervised methods on the MVSEC benchmark, and is competitive on the DSEC benchmark. Moreover, our method allows us to expose the issues of the ground truth flow in those benchmarks, and produces remarkable results when it is transferred to unsupervised learning settings. Our code is available at https://github.com/tub-rip/event_based_optical_flow
翻译:事件相机对现场动态做出反应,并提供了估计运动的优势。根据最近基于图像的深层学习成就,事件相机的光学流量估计方法急速地将这些基于图像的方法与事件数据结合起来。然而,它要求进行一些调整(数据转换、损失功能等),因为它们的特性非常不同。我们开发了一种原则性方法,以扩展对比最大化框架,以仅从事件中估计光学流。我们研究了关键要素:如何设计防止过度调整的目标功能,如何对事件进行扭曲以更好地处理隔离问题,以及如何改进与多尺度原始事件的趋同。有了这些关键要素,我们的方法在MVSEC基准的未监督方法中名列第一,并在DSEC基准上具有竞争力。此外,我们的方法使我们能够暴露这些基准中的地面真相流动问题,并在将它转移到不受监督的学习环境时产生显著的结果。我们的代码可在 https://github.com/tub-rip/event_bbb_broad_patal_plown_plow。