Despite their great success in image recognition tasks, deep neural networks (DNNs) have been observed to be susceptible to universal adversarial perturbations (UAPs) which perturb all input samples with a single perturbation vector. However, UAPs often struggle in transferring across DNN architectures and lead to challenging optimization problems. In this work, we study the transferability of UAPs by analyzing equilibrium in the universal adversarial example game between the classifier and UAP adversary players. We show that under mild assumptions the universal adversarial example game lacks a pure Nash equilibrium, indicating UAPs' suboptimal transferability across DNN classifiers. To address this issue, we propose Universal Adversarial Directions (UADs) which only fix a universal direction for adversarial perturbations and allow the perturbations' magnitude to be chosen freely across samples. We prove that the UAD adversarial example game can possess a Nash equilibrium with a pure UAD strategy, implying the potential transferability of UADs. We also connect the UAD optimization problem to the well-known principal component analysis (PCA) and develop an efficient PCA-based algorithm for optimizing UADs. We evaluate UADs over multiple benchmark image datasets. Our numerical results show the superior transferability of UADs over standard gradient-based UAPs.


翻译:尽管深度神经网络(DNN)在图像识别任务中取得了巨大成功,但已经观察到它们容易受到通用的对抗性扰动(UAPs)的影响,这些扰动通过单个扰动向量影响所有的输入样本。然而,UAPs在跨DNN架构转移方面经常遇到困难,导致挑战性的优化问题。在这项工作中,我们通过分析分类器和UAP对手玩家之间的通用对抗性示例博弈的均衡来研究UAPs的可转移性。我们证明,在温和的假设下,通用对抗性示例博弈缺乏一个纯纳什均衡,说明UAPs在DNN分类器之间具有次优的可转移性。为解决这个问题,我们提出了通用对抗性方向(UADs),它们只针对对抗扰动固定一个通用方向,并允许在样本之间自由选择扰动的大小。我们证明了UAD对抗性示例博弈可以具有一个纯UAD策略的纳什均衡,这意味着UADs的潜在可转移性。我们还将UAD优化问题与著名的主成分分析(PCA)联系起来,并开发了一种高效的基于PCA的算法来优化UADs。我们在多个基准图像数据集上评估了UADs。我们的数值结果显示UADs具有比标准基于梯度的UAPs更好的可转移性。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
47+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
74+阅读 · 2022年7月16日
Arxiv
38+阅读 · 2020年3月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关VIP内容
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员