In our pursuit of generic criteria for decidable ontology-based querying, we introduce 'finite-cliquewidth sets' (FCS) of existential rules, a model-theoretically defined class of rule sets, inspired by the cliquewidth measure from graph theory. By a generic argument, we show that FCS ensures decidability of entailment for a sizable class of queries (dubbed 'DaMSOQs') subsuming conjunctive queries (CQs). The FCS class properly generalizes the class of finite-expansion sets (FES), and for signatures of arity at most 2, the class of bounded-treewidth sets (BTS). For higher arities, BTS is only indirectly subsumed by FCS by means of reification. Despite the generality of FCS, we provide a rule set with decidable CQ entailment (by virtue of first-order-rewritability) that falls outside FCS, thus demonstrating the incomparability of FCS and the class of finite-unification sets (FUS). In spite of this, we show that if we restrict ourselves to single-headed rule sets over signatures of arity at most 2, then FCS subsumes FUS.
翻译:在追求基于肿瘤的可分解查询的通用标准时,我们引入了“FCS ” (FCS) 存在规则的“FCS ” (FCS ), 这是一种模型-理论定义的规则组, 受图形理论的分层测量的启发。 我们通过一种通用的论证, 显示FCS 确保了可分解查询类别( dubbbed 'DaMSOQ ) 的递归合并查询(CQs ) 的递归性。 FCS 类恰当地概括了有限扩展规则(FES ) 的等级, 以及最多2 的正义性标志(BTS ), 受约束的树木组的类别(BTS ) 。 对于更高比例的测量, BTS 只能通过再化手段间接地由 FCSCS 整合。 尽管 FCS 具有一般性, 我们提供了一套可分解的CQ 要求( 依据第一顺序的可分解性), 它不属于FCS 范围,,, 从而表明FCS 和 的类别的类别的不可分数 。