Under increasing economic and environmental pressure, airlines are constantly seeking new technologies and optimizing flight operations to reduce fuel consumption. However, the current practice on fuel loading, which has a significant impact on aircraft weight and fuel consumption, has yet to be thoroughly addressed by existing studies. Excess fuel is loaded by dispatchers and (or) pilots to handle fuel consumption uncertainties, primarily caused by flight time uncertainties, which cannot be predicted by current Flight Planning Systems. In this paper, we develop a novel spatial weighted recurrent neural network model to provide better flight time predictions by capturing air traffic information at a national scale based on multiple data sources, including Automatic Dependent Surveillance-Broadcast, Meteorological Aerodrome Reports, and airline records. In this model, a spatial weighted layer is designed to extract spatial dependences among network delay states. Then, a new training procedure associated with the spatial weighted layer is introduced to extract OD-specific spatial weights. Long short-term memory networks are used to extract the temporal behavior patterns of network delay states. Finally, features from delays, weather, and flight schedules are fed into a fully connected neural network to predict the flight time of a particular flight. The proposed model was evaluated using one year of historical data from an airline's real operations. Results show that our model can provide more accurate flight time predictions than baseline methods, especially for flights with extreme delays. We also show that, with the improved flight time prediction, fuel loading can be optimized and resulting in reduced fuel consumption by 0.016%-1.915% without increasing the fuel depletion risk.


翻译:在不断增大的经济和环境压力下,航空公司不断寻求新技术,优化飞行作业,以减少燃料消耗;然而,目前燃料装载的做法,对飞机重量和燃料消耗有重大影响,尚未通过现有研究彻底处理;过量燃料由调度员和(或)处理燃料消耗不确定因素的试点项目装载过量燃料,这主要是飞行时间不确定因素造成的,目前飞行规划系统无法预测这一点。在本文件中,我们开发了一个新的空间加权经常性神经网络模型,以便根据多种数据来源,从全国范围获取空中交通信息,从而提供更好的飞行时间预测;最后,根据各种数据来源,包括自动附属监测-广播、气象航空报告以及航空公司记录,收集空中交通信息,以提供更好的飞行时间预测;在这一模型中,空间加权层旨在减少网络延迟状态之间的空间依赖;然后,引入与空间加权层相关的新培训程序,以提取目前飞行规划系统无法预测的特定空间重量;在本文件中,我们开发了一个长期的记忆网络,用来提取网络延迟状态的时间行为模式;最后,延迟、天气和飞行时间表的特征被输入到一个完全相连的神经网络,以预测特定飞行飞行时间,而没有固定的飞行时间。我们提出的飞行预测结果,通过一个历史预测结果显示一个更精确的飞行的飞行模型,可以显示一个比精确的飞行的飞行的飞行的飞行周期更精确的飞行时间。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
99+阅读 · 2020年1月13日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
3+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月24日
Deep Learning for Energy Markets
Arxiv
9+阅读 · 2019年4月10日
Arxiv
8+阅读 · 2018年11月27日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
3+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员