Theories can be represented as statistical models for empirical testing. There is a vast literature on model selection and multimodel inference that focuses on how to assess which statistical model, and therefore which theory, best fits the available data. For example, given some data, one can compare models on various information criterion or other fit statistics. However, what these indices fail to capture is the full range of counterfactuals. That is, some models may fit the given data better not because they represent a more correct theory, but simply because these models have more fit propensity - a tendency to fit a wider range of data, even nonsensical data, better. Current approaches fall short in considering the principle of parsimony (Occam's Razor), often equating it with the number of model parameters. Here we offer a toolkit for researchers to better study and understand parsimony through the fit propensity of Structural Equation Models. We provide an R package (ockhamSEM) built on the popular lavaan package. To illustrate the importance of evaluating fit propensity, we use ockhamSEM to investigate the factor structure of the Rosenberg Self-Esteem Scale.


翻译:可以将理论作为经验测试的统计模型。 在模型选择和多模型推论方面有大量文献,这些文献侧重于如何评估哪些统计模型,因此哪一种理论最符合现有数据。例如,根据某些数据,可以比较各种信息标准或其他适当统计的模型。然而,这些指数未能捕捉到的是全部的反事实。也就是说,有些模型可能更适合特定数据,不是因为它们代表更正确的理论,而只是因为这些模型具有更合适的倾向性――一种适合范围更广的数据,甚至非感官数据,更好。目前的方法在考虑类比原则(Occam's Razor)方面尚不尽如人意,常常将其与模型参数数等同起来。在这里,我们为研究人员提供了一个工具包,通过结构方位模型的适宜性来更好地研究和理解类比。我们提供了一套基于流行的熔岩包的R包(okhamSEMEM) 。为了说明评价适合性的重要性,我们使用 ASOMSEM 来调查罗森自制比例结构要素结构。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
5+阅读 · 2020年12月10日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员