We study downlink channel estimation in a multi-cell Massive multiple-input multiple-output (MIMO) system operating in time-division duplex. The users must know their effective channel gains to decode their received downlink data. Previous works have used the mean value as the estimate, motivated by channel hardening. However, this is associated with a performance loss in non-isotropic scattering environments. We propose two novel estimation methods that can be applied without downlink pilots. The first method is model-based and asymptotic arguments are utilized to identify a connection between the effective channel gain and the average received power during a coherence interval. The second method is data-driven and trains a neural network to identify a mapping between the available information and the effective channel gain. Both methods can be utilized for any channel distribution and precoding. For the model-aided method, we derive all expressions in closed form for the case when maximum ratio or zero-forcing precoding is used. We compare the proposed methods with the state-of-the-art using the normalized mean-squared error and spectral efficiency (SE). The results suggest that the two proposed methods provide better SE than the state-of-the-art when there is a low level of channel hardening, while the performance difference is relatively small with the uncorrelated channel model.
翻译:我们在一个在时间差异下方运行的多细胞多投入多输出(MIIMO)系统中研究下链接频道估计。 用户必须知道他们的有效渠道收益, 以解码他们收到的下链接数据。 先前的作品已经使用平均值作为估计数, 由频道加硬驱动。 但是, 这与非星系散射环境中的性能损失有关。 我们建议了两种新的估计方法, 可以在不下链接试点项目的情况下应用。 第一个方法基于模型, 并且使用无药可救的参数来确定有效通道收益和在一致性间隔期间平均获得的能量之间的联系。 第二个方法是数据驱动的, 并训练一个神经网络, 以确定可用信息与有效通道收益之间的映射。 这两种方法都可以用于任何频道分布和预编码。 对于模型辅助方法, 我们用封闭的形式为案件提供所有表达方式, 当使用最大比率或零向前编码时。 我们用模型为基础, 并且使用新提议的方法与状态相比, 使用普通平均错误和光谱中平均获得的功率。 第二种方法是数据驱动的神经网络网络网络网络网络, 并且相对来说, 显示SEA 与低端频道的性效率是比较的状态。 。 。 。 。 建议的结果是SEEEEA 。 。 与低级的成绩显示比与低端的轨道是比与低频带的状态, 。