In topology optimization, the state of structures is typically obtained by numerically evaluating a discretized PDE-based model. The degrees of freedom of such a model can be partitioned in free and prescribed sets to define the boundary conditions. A multi-partition problem involves multiple partitions of the same discretization, typically corresponding to different loading scenarios. As a result, solving multi-partition problems involves multiple factorization/preconditionings of the system matrix, requiring a high computational effort. In this paper, a novel method is proposed to efficiently calculate the responses and accompanying design sensitivities in such multi-partition problems using static condensation for use in gradient-based topology optimization. A main problem class that benefits from the proposed method is the topology optimization of small-displacement multi-input-multi-output compliant mechanisms. However, the method is applicable to any linear problem. We present its formulation and an algorithmic complexity analysis to estimate computational advantages for both direct and iterative solution methods to solve the system of equations, verified by numerical experiments. It is demonstrated that substantial gains are achievable for large-scale multi-partition problems. This is especially true for problems with both a small set of number of degrees of freedom that fully describes the performance of the structure and with large similarities between the different partitions. A major contribution to the gain is the lack of large adjoint analyses required to obtain the sensitivities of the performance measure.


翻译:在地形优化方面,结构状况通常是通过数字评估一个以PDE为基础的分解模型获得的。这种模型的自由度可以自由分割,可以指定一组来界定边界条件。多部分问题涉及同一分解的多部分分解,通常与不同的装货情景相对应。因此,解决多部分问题涉及系统矩阵的多重因数化/预设,需要大量的计算努力。在本文件中,提议了一种新颖的方法,以便有效地计算在这种多部分问题中的反应和伴随的设计敏感性,使用静态叠加,用于基于梯度的顶层优化。拟议方法的一个主要问题是小分散多投入-多产出合规机制的表面优化。然而,该方法适用于任何线性问题。我们提出其拟订和算法复杂性分析,以估计直接和迭代解决方案在解决方程系统中的计算优势,通过数字实验加以核实。事实证明,大规模多部分分解问题可以实现重大收益。拟议方法的一个主要问题是小分散的多部分分解的多部分问题,而对于大规模分解性分析的难度也是大比例之间最真实的。对于大规模分解度分析的共度分析,这是对大量分解度分析的难度分析。对大量分解结构的准确性分析。对大量分解的准确性分析的准确度的准确度的准确度是分解分析。

0
下载
关闭预览

相关内容

专知会员服务
109+阅读 · 2020年3月20日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年1月10日
Arxiv
0+阅读 · 2022年1月4日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
109+阅读 · 2020年3月20日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员