A physically-motivated genetic algorithm (GA) and full enumeration for a tile-based model of self-assembly (JaTAM) is implemented using a graphics processing unit (GPU). We observe performance gains with respect to state-of-the-art implementations on CPU of factor 7.7 for the GA and 2.9 for JaTAM. The correctness of our GA implementation is demonstrated using a test-bed fitness function, and our JaTAM implementation is verified by classifying a well-known search space $S_{2,8}$ based on two tile types. The performance gains achieved allow for the classification of a larger search space $S^{32}_{3,8}$ based on three tile types. The prevalence of structures based on two tile types demonstrates that simple organisms emerge preferrably even in complex ecosystems. The modularity of the largest structures found motivates the assumption that to first order, $S_{2,8}$ forms the building blocks of $S_{3,8}$. We conclude that GPUs may play an important role in future studies of evolutionary dynamics.
翻译:使用一个图形处理器(GPU)来实施基于实物动机的基因算法(GA)和充分罗列基于瓷砖的自我组装模型(JATAM),我们观察了在CPU(7.7系数)上对GA和对JATAM的工艺性实施情况。我们采用测试床健身功能来证明我们实施GA的正确性,而我们的JATAM(JATAM)的实施通过对一个以两种瓷砖类型为基础的众所周知的搜索空间(S+2,8美元)进行分类来核实。通过实现的绩效收益可以对基于三种瓷砖类型的更大的搜索空间进行分类。基于两种瓷形类型的结构的普及表明,即使在复杂的生态系统中,简单生物也比较容易出现。发现的最大结构的模块性促使假设,即第一阶值为$S+2,8美元构成3,8美元的建筑块。我们的结论是,GPU可能在未来的进化动态研究中发挥重要作用。