Massive MIMO systems can achieve high spectrum and energy efficiency in downlink (DL) based on accurate estimate of channel state information (CSI). Existing works have developed learning-based DL CSI estimation that lowers uplink feedback overhead. One often overlooked problem is the limited number of DL pilots available for CSI estimation. One proposed solution leverages temporal CSI coherence by utilizing past CSI estimates and only sending CSI-reference symbols (CSI-RS) for partial arrays to preserve CSI recovery performance. Exploiting CSI correlations, FDD channel reciprocity is helpful to base stations with direct access to uplink CSI. In this work, we propose a new learning-based feedback architecture and a reconfigurable CSI-RS placement scheme to reduce DL CSI training overhead and to improve encoding efficiency of CSI feedback. Our results demonstrate superior performance in both indoor and outdoor scenarios by the proposed framework for CSI recovery at substantial reduction of computation power and storage requirements at UEs.
翻译:根据对频道状态信息的准确估计,大型MIMO系统可以在下行链路(DL)上实现高频和能源效率; 现有工程开发了基于学习的DL CSI估计,降低了上行反馈管理费用; 一个经常被忽略的问题是可用于CSI估计的DL试点数量有限; 一个拟议解决方案利用过去CSI估计,仅为部分阵列发送CSI参考符号(CSI-RS),以保持CSI恢复性能,从而利用CSI参考符号(CSI-RS)来利用CSI的时间一致性。 探索CSI的相互关系,捍卫民主阵线的对等性有助于直接连接CSI的基地站。 在这项工作中,我们提出了一个新的基于学习的反馈架构和可重新配置的CSI-RS安置计划,以减少DL CSI培训间接费用,提高CSI反馈的编码效率。我们的结果显示,CSI恢复框架在大幅度削减UES的计算能力和储存要求时,在室内和室外两种情景上都表现优异。