Domain generalization aims to learn a model that can generalize well on the unseen test dataset, i.e., out-of-distribution data, which has different distribution from the training dataset. To address domain generalization in computer vision, we introduce the loss landscape theory into this field. Specifically, we bootstrap the generalization ability of the deep learning model from the loss landscape perspective in four aspects, including backbone, regularization, training paradigm, and learning rate. We verify the proposed theory on the NICO++, PACS, and VLCS datasets by doing extensive ablation studies as well as visualizations. In addition, we apply this theory in the ECCV 2022 NICO Challenge1 and achieve the 3rd place without using any domain invariant methods.
翻译:领域泛化目的在于学习一个模型,它能够在未见过的测试数据集上得到良好的泛化效果,即在训练数据集不同于测试数据集的情况下,有着较好的泛化能力。为了解决计算机视觉中的领域泛化问题,我们将损失landscape理论引入到这一领域中。具体地,我们从CNN模型的四个方面,包括骨干网络,正则化,训练范式和学习速率的角度,从损失landscape的角度来Bootstrap深度学习模型的泛化能力。我们通过详细的消融研究和可视化,在NICO++, PACS和VLCS等数据集上验证了所提出的理论。此外,我们将这一理论应用于ECCV 2022 NICO Challenge1,并在不使用任何领域不变方法的情况下获得了第三名。