项目名称: 液体表面波及其粘弹特性的力学共振吸收谱研究

项目编号: No.11274391

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 熊小敏

作者单位: 中山大学

项目金额: 80万元

中文摘要: 液体表面波及其粘弹特性能够有效地揭示复杂液体界面的结构及其演化,是软物质研究的重要方向。我们应用本课题组研制成功的基于原子力显微镜的力学共振吸收谱仪,把安装在探针悬臂梁上直径为1-2微米的细长玻璃棒接触液体表面,利用不同频率的电磁外力激发探针悬臂梁的弯曲振动,测量探针的机械能损耗-频率谱,即:力学共振吸收谱。实验表明:与璃璃棒相耦合的液体表面波的谐波振动模式在探针的力学共振吸收谱上出现相应的共振吸收峰,因此基于原子力显微镜的力学共振吸收谱仪能发展成为研究液体表面波及其粘弹特性的全新实验方法。通过本项目的研究,我们不仅能获得具有原创性的测量液体表面粘弹特性(如:表面张力)的方法,而且通过研究不同液体表面(吸附了不同表面活性分子、蛋白质分子及其它生物大分子)的表面波谐波振动模的共振吸峰,得到吸附在液体表面的大分子在不同浓度、外场,如温度、电场下的粘弹特性,从而进一步研究大分子的构象及其变化。

中文关键词: 表面波;粘弹性质;液体表面;力学谱;内耗

英文摘要: The investigation of surface wave of fluid and its viscoelasticity could reveal the structure of interface and its evolution in complex fluids and become an important research field of soft matter. We glue a glass fiber with a diameter of 1 - 2 micrometers and tens micromters in length onto the cantilever of atomic force microscope and develop an atomic-force-microscope based mechanical resonant adsorption spectra. Then we attach the glass fiber to the surface of fluid and excite the bending motion of cantilever via an electromagnetic force with varying frequencies. We measure the mechanical dissipation spectrum of the cantilever,i.e., mechanical resonant adsorption spectrum. Experiments show that in mechanical resonant adsorption spectrum there appear some resonant absorption peaks corresponding to the harmonic vibration modes of liquid surface coupled to the glass fiber, which means that our developed atomic-force-microscope based mechanical resonant adsorption spectra can become a novel method to investigate the property of liquid surface, especially its viscoelasticity. After performing this project, we can hopefully establish a novel method to measure the viscoelasticity of liquid surface,such as surface tension. Furthermore through studying the mechanical resonant adsorption peaks of liquid surface we can

英文关键词: capillary wave;viscoelasticity;liquid surface;mechanical spectra;internal friction

成为VIP会员查看完整内容
0

相关内容

AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
39+阅读 · 2022年2月28日
【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
65+阅读 · 2021年12月29日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
《概率统计及其在计算中的应用》书册,384页pdf
专知会员服务
45+阅读 · 2021年1月7日
【经典书】概率统计导论第五版,730页pdf
专知会员服务
237+阅读 · 2020年7月28日
专知会员服务
19+阅读 · 2020年3月29日
是什么原因让你不想换手机?
ZEALER订阅号
0+阅读 · 2022年2月12日
心之所向的无尽蓝,vivo S12 Pro「屿蓝」
ZEALER订阅号
0+阅读 · 2022年1月27日
流媒体音响套装:山灵 EA5 我愿称之为万元内最强?
ZEALER订阅号
0+阅读 · 2021年12月16日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
64+阅读 · 2021年6月18日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
12+阅读 · 2019年3月14日
小贴士
相关主题
相关VIP内容
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
39+阅读 · 2022年2月28日
【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
65+阅读 · 2021年12月29日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
《概率统计及其在计算中的应用》书册,384页pdf
专知会员服务
45+阅读 · 2021年1月7日
【经典书】概率统计导论第五版,730页pdf
专知会员服务
237+阅读 · 2020年7月28日
专知会员服务
19+阅读 · 2020年3月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
微信扫码咨询专知VIP会员