Fact checking is an essential challenge when combating fake news. Identifying documents that agree or disagree with a particular statement (claim) is a core task in this process. In this context, stance detection aims at identifying the position (stance) of a document towards a claim. Most approaches address this task through a 4-class classification model where the class distribution is highly imbalanced. Therefore, they are particularly ineffective in detecting the minority classes (for instance, 'disagree'), even though such instances are crucial for tasks such as fact-checking by providing evidence for detecting false claims. In this paper, we exploit the hierarchical nature of stance classes, which allows us to propose a modular pipeline of cascading binary classifiers, enabling performance tuning on a per step and class basis. We implement our approach through a combination of neural and traditional classification models that highlight the misclassification costs of minority classes. Evaluation results demonstrate state-of-the-art performance of our approach and its ability to significantly improve the classification performance of the important 'disagree' class.
翻译:在打击假新闻时,对事实进行检查是一项基本的挑战。 识别同意或不同意某一声明( 声明) 的文件是此过程中的一项核心任务。 在这方面, 姿态检测旨在确定文件对索赔的立场( 程度) 。 多数方法都是通过四级分类模式处理这项任务, 阶级分布高度不平衡。 因此, 在检测少数民族类别( 例如“ 不满 ” ) 方面, 尤其没有实效, 即使这类情形对于通过提供证据来检测虚假主张来进行事实检查等任务至关重要。 在本文中, 我们利用了立场类的等级性质, 从而使我们能够提出一个双级级级级分类模式, 以便按级和级调整业绩。 我们通过强调少数民族类别分类成本错误的神经和传统分类模式实施我们的方法。 评估结果显示了我们方法的最新表现及其显著改进重要“ 分裂” 类分类绩效的能力。