This paper discusses phase retrieval algorithms for maximum likelihood (ML) estimation from measurements following independent Poisson distributions in very low-count regimes, e.g., 0.25 photon per pixel. To maximize the log-likelihood of the Poisson ML model, we propose a modified Wirtinger flow (WF) algorithm using a step size based on the observed Fisher information. This approach eliminates all parameter tuning except the number of iterations. We also propose a novel curvature for majorize-minimize (MM) algorithms with a quadratic majorizer. We show theoretically that our proposed curvature is sharper than the curvature derived from the supremum of the second derivative of the Poisson ML cost function. We compare the proposed algorithms (WF, MM) with existing optimization methods, including WF using other step-size schemes, quasi-Newton methods such as LBFGS and alternating direction method of multipliers (ADMM) algorithms, under a variety of experimental settings. Simulation experiments with a random Gaussian matrix, a canonical DFT matrix, a masked DFT matrix and an empirical transmission matrix demonstrate the following. 1) As expected, algorithms based on the Poisson ML model consistently produce higher quality reconstructions than algorithms derived from Gaussian noise ML models when applied to low-count data. 2) For unregularized cases, our proposed WF algorithm with Fisher information for step size converges faster than other WF methods, e.g., WF with empirical step size, backtracking line search, and optimal step size for the Gaussian noise model; it also converges faster than the LBFGS quasi-Newton method. 3) In regularized cases, our proposed WF algorithm converges faster than WF with backtracking line search, LBFGS, MM and ADMM.


翻译:本文讨论在非常低价的制度下,例如每像素0. 25 光子每像素0. 25 光子。 为了最大限度地实现 Poisson ML 模型的对数相似值, 我们提议使用观察到的Fisher 信息的一步尺寸修改Wirtinger(WF) 算法。 这个方法消除除迭代数以外的所有参数调试。 我们还提议了在非常低价制度下, 从独立Poisson 分布的测量中进行最大可能性(MMM) 估计的新的曲解。 我们从理论上显示, 我们提议的曲线比Poisson ML 成本函数第二个衍生体的顶级更清晰的曲线。 我们建议用现有的优化方法(WFFS, MM) 修改 Wirtingerger 运算(WFI), 准New-Newton 方法,如LBGS, 和 后向后向方向算方法, 在各种实验环境中进行随机测测算 egross egal 矩阵, 也用SLFFS 和后向导算法 的MLMLML 矩阵 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
DOLPH: Diffusion Models for Phase Retrieval
Arxiv
0+阅读 · 2022年11月2日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员