This paper discusses phase retrieval algorithms for maximum likelihood (ML) estimation from measurements following independent Poisson distributions in very low-count regimes, e.g., 0.25 photon per pixel. To maximize the log-likelihood of the Poisson ML model, we propose a modified Wirtinger flow (WF) algorithm using a step size based on the observed Fisher information. This approach eliminates all parameter tuning except the number of iterations. We also propose a novel curvature for majorize-minimize (MM) algorithms with a quadratic majorizer. We show theoretically that our proposed curvature is sharper than the curvature derived from the supremum of the second derivative of the Poisson ML cost function. We compare the proposed algorithms (WF, MM) with existing optimization methods, including WF using other step-size schemes, quasi-Newton methods such as LBFGS and alternating direction method of multipliers (ADMM) algorithms, under a variety of experimental settings. Simulation experiments with a random Gaussian matrix, a canonical DFT matrix, a masked DFT matrix and an empirical transmission matrix demonstrate the following. 1) As expected, algorithms based on the Poisson ML model consistently produce higher quality reconstructions than algorithms derived from Gaussian noise ML models when applied to low-count data. 2) For unregularized cases, our proposed WF algorithm with Fisher information for step size converges faster than other WF methods, e.g., WF with empirical step size, backtracking line search, and optimal step size for the Gaussian noise model; it also converges faster than the LBFGS quasi-Newton method. 3) In regularized cases, our proposed WF algorithm converges faster than WF with backtracking line search, LBFGS, MM and ADMM.
翻译:本文讨论在非常低价的制度下,例如每像素0. 25 光子每像素0. 25 光子。 为了最大限度地实现 Poisson ML 模型的对数相似值, 我们提议使用观察到的Fisher 信息的一步尺寸修改Wirtinger(WF) 算法。 这个方法消除除迭代数以外的所有参数调试。 我们还提议了在非常低价制度下, 从独立Poisson 分布的测量中进行最大可能性(MMM) 估计的新的曲解。 我们从理论上显示, 我们提议的曲线比Poisson ML 成本函数第二个衍生体的顶级更清晰的曲线。 我们建议用现有的优化方法(WFFS, MM) 修改 Wirtingerger 运算(WFI), 准New-Newton 方法,如LBGS, 和 后向后向方向算方法, 在各种实验环境中进行随机测测算 egross egal 矩阵, 也用SLFFS 和后向导算法 的MLMLML 矩阵 。