Phase retrieval refers to the problem of recovering an image from the magnitudes of its complex-valued linear measurements. Since the problem is ill-posed, the recovery requires prior knowledge on the unknown image. We present DOLPH as a new deep model-based architecture for phase retrieval that integrates an image prior specified using a diffusion model with a nonconvex data-fidelity term for phase retrieval. Diffusion models are a recent class of deep generative models that are relatively easy to train due to their implementation as image denoisers. DOLPH reconstructs high-quality solutions by alternating data-consistency updates with the sampling step of a diffusion model. Our numerical results show the robustness of DOLPH to noise and its ability to generate several candidate solutions given a set of measurements.
翻译:阶段检索是指从复杂价值线性测量的大小中恢复图像的问题。由于问题存在缺陷,恢复需要事先了解未知图像。我们将DOLPH作为基于阶段检索的新的深层模型结构,其中将先前使用非convex数据忠实性术语的扩展模型和非convex数据忠实术语来进行阶段检索的图像整合在一起。扩散模型是最近一类深层基因化模型,由于作为图像隐性测量器加以应用,因此相对容易培训。 DOLPH通过将数据一致性更新与扩散模型的取样步骤交替进行高质量的解决方案重建。我们的数字结果显示DOLPH对噪音及其在一系列测量条件下生成若干候选解决方案的能力的强大性。