We obtain robust and computationally efficient estimators for learning several linear models that achieve statistically optimal convergence rate under minimal distributional assumptions. Concretely, we assume our data is drawn from a $k$-hypercontractive distribution and an $\epsilon$-fraction is adversarially corrupted. We then describe an estimator that converges to the optimal least-squares minimizer for the true distribution at a rate proportional to $\epsilon^{2-2/k}$, when the noise is independent of the covariates. We note that no such estimator was known prior to our work, even with access to unbounded computation. The rate we achieve is information-theoretically optimal and thus we resolve the main open question in Klivans, Kothari and Meka [COLT'18]. Our key insight is to identify an analytic condition that serves as a polynomial relaxation of independence of random variables. In particular, we show that when the moments of the noise and covariates are negatively-correlated, we obtain the same rate as independent noise. Further, when the condition is not satisfied, we obtain a rate proportional to $\epsilon^{2-4/k}$, and again match the information-theoretic lower bound. Our central technical contribution is to algorithmically exploit independence of random variables in the "sum-of-squares" framework by formulating it as the aforementioned polynomial inequality.


翻译:我们为学习在最低分配假设下达到统计上最佳趋同率的几种线性模型获得了强大和计算效率高的估算器。 具体地说, 我们假设我们的数据来自一个以美元超率分布方式得出的数据, 而以美元折合率折合的折合率则是对抗性的。 我们然后描述一个与最优最低分配率相趋同的估算器, 其真正分配的比值相当于$\epsilon ⁇ 2/2/k}, 当噪音独立于共变体时。 我们注意到, 在我们的工作之前, 还没有知道这种估算器, 即使可以不受限制地计算。 我们实现的数据是信息- 理论性最佳的分布, 因此我们解决了Klivans、Kothari和Meka[COLT'18] 中的主要开放问题。 我们的主要洞察力是确定一个解析性条件, 它相当于随机变量的多数值松动。 特别是, 当噪音和共变异体的瞬间时, 我们得到相同的比例, 我们作为独立的计算结果。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年2月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员