Robust estimators and Wald-type tests are developed for the multinomial logistic regression based on $\phi$-divergence measures. The robustness of the proposed estimators and tests is proved through the study of their influence functions and it is also illustrated with two numerical examples and an extensive simulation study.


翻译:根据$\phe$-divegence 措施,为多级后勤回归开发了强力估计器和Wald型测试,拟议的估计器和测试的稳健性通过研究其影响功能得到证明,并用两个数字例子和广泛的模拟研究加以说明。

0
下载
关闭预览

相关内容

多元逻辑回归模型的理论前提相对判别分析法要宽松得多,且没有关于分布类型、协方差阵等方面的严格假定。不过,在大量运用多元逻辑 回归的研究中往往忽视了另一个相当重要的问题,即模型自变量之间可能存在的多重共线性干扰。与其他多元回归方法一样,Logistic回归模型也对多元共线性敏感。当变量之间的相关程度提高时,系数估计的标准误将会急剧增加;同时,系数对样本和模型设置都非常敏感,模型设置的微小变化、在样本总体中加入或删除案例等变动,都会导致系数估计的较大变化。
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员