Since we can leverage a large amount of unlabeled data without any human supervision to train a model and transfer the knowledge to target tasks, self-supervised learning is a de-facto component for the recent success of deep learning in various fields. However, in many cases, there is a discrepancy between a self-supervised learning objective and a task-specific objective. In order to tackle such discrepancy in Text-to-SQL task, we propose a novel self-supervised learning framework. We utilize the task-specific properties of Text-to-SQL task and the underlying structures of table contents to train the models to learn useful knowledge of the \textit{header-column} alignment task from unlabeled table data. We are able to transfer the knowledge to the supervised Text-to-SQL training with annotated samples, so that the model can leverage the knowledge to better perform the \textit{header-span} alignment task to predict SQL statements. Experimental results show that our self-supervised learning framework significantly improves the performance of the existing strong BERT based models without using large external corpora. In particular, our method is effective for training the model with scarce labeled data. The source code of this work is available in GitHub.


翻译:由于我们可以在没有任何人力监督的情况下利用大量未贴标签的数据来培训模型并将知识转让给目标任务,自我监督的学习是最近不同领域深层学习成功的一个实际组成部分。 但是,在许多情况下,自我监督的学习目标和任务特定目标之间存在差异。 为了解决文本到SQL任务中的这种差异,我们提议了一个全新的自我监督的学习框架。我们利用文本到SQL任务的任务特性和表格内容的基本结构来培训模型,从未贴标签的表格数据中学习关于\ textit{header-clunn}协调的有用知识。我们能够将知识转让给受监督的文本到SQL培训,并配有附加说明的样本,以便模型能够利用知识更好地执行 textitit{header-span}协调任务,预测SQL的报表。实验结果显示,我们自我监督的学习框架大大改进了基于BERTERT的强大模型的性能,而没有使用大号数据源码。 我们的GiH培训是使用大型数据源。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
13+阅读 · 2020年4月12日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员