Integrating machine learning (ML) into customer service chatbots enhances their ability to understand and respond to user queries, ultimately improving service performance. However, they may appear artificial to some users and affecting customer experience. Hence, meticulous evaluation of ML models for each pipeline component is crucial for optimizing performance, though differences in functionalities can lead to unfair comparisons. In this paper, we present a tailored experimental evaluation approach for goal-oriented customer service chatbots with pipeline architecture, focusing on three key components: Natural Language Understanding (NLU), dialogue management (DM), and Natural Language Generation (NLG). Our methodology emphasizes individual assessment to determine optimal ML models. Specifically, we focus on optimizing hyperparameters and evaluating candidate models for NLU (utilizing BERT and LSTM), DM (employing DQN and DDQN), and NLG (leveraging GPT-2 and DialoGPT). The results show that for the NLU component, BERT excelled in intent detection whereas LSTM was superior for slot filling. For the DM component, the DDQN model outperformed DQN by achieving fewer turns, higher rewards, as well as greater success rates. For NLG, the large language model GPT-2 surpassed DialoGPT in BLEU, METEOR, and ROUGE metrics. These findings aim to provide a benchmark for future research in developing and optimizing customer service chatbots, offering valuable insights into model performance and optimal hyperparameters.
翻译:暂无翻译