Given a combinatorial search problem, it may be highly useful to enumerate its (all) solutions besides just finding one solution, or showing that none exists. The same can be stated about optimal solutions if an objective function is provided. This work goes beyond the bare enumeration of optimal solutions and addresses the computational task of solution enumeration by optimality (SEO). This task is studied in the context of Answer Set Programming (ASP) where (optimal) solutions of a problem are captured with the answer sets of a logic program encoding the problem. Existing answer-set solvers already support the enumeration of all (optimal) answer sets. However, in this work, we generalize the enumeration of optimal answer sets beyond strictly optimal ones, giving rise to the idea of answer set enumeration in the order of optimality (ASEO). This approach is applicable up to the best k answer sets or in an unlimited setting, which amounts to a process of sorting answer sets based on the objective function. As the main contribution of this work, we present the first general algorithms for the aforementioned tasks of answer set enumeration. Moreover, we illustrate the potential use cases of ASEO. First, we study how efficiently access to the next-best solutions can be achieved in a number of optimization problems that have been formalized and solved in ASP. Second, we show that ASEO provides us with an effective sampling technique for Bayesian networks.


翻译:鉴于组合搜索问题,除了只找到一种解决办法,或显示不存在任何解决办法之外,列出其(所有)解决方案可能非常有用。如果提供客观功能,也可以就最佳解决方案指出最佳解决方案。这项工作超越了简单列举最佳解决方案的范围,并涉及以最佳性(SEO)来计算解决方案的计算任务。这一任务在“答案设定”方案(ASP)范围内研究,因为根据一个逻辑程序对问题的解答组合进行编码。现有的答案设置解析器已经支持列出所有(最佳)答案组。然而,在这项工作中,我们将最佳答案组的列举范围扩大到严格最佳的答案组之外,从而产生按最佳性(ASEO)排列答案组的想法。这一方法适用于最佳的 k 答案组或无限制的设置,这相当于根据目标功能对答案组进行分类的过程。作为这项工作的主要贡献,我们为上述答案组的解答组合提供了第一种通用的算法。此外,我们展示了ASEO网络的潜在用途。首先,我们研究如何以最佳的方法有效地展示了我们实现最佳的第二套方法。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Question Generation by Transformers
Arxiv
5+阅读 · 2019年9月14日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员