Let a polytope $\mathcal{P}$ be defined by one of the following ways: (i) $\mathcal{P} = \{x \in \mathbb{R}^n \colon A x \leq b\}$, where $A \in \mathbb{Z}^{(n+m) \times n}$, $b \in \mathbb{Z}^{(n+m)}$, and $rank(A) = n$, (ii) $\mathcal{P} = \{x \in \mathbb{R}_+^n \colon A x = b\}$, where $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^{m}$, and $rank(A) = m$, and let all the rank minors of $A$ be bounded by $\Delta$ in the absolute values. We show that $|\mathcal{P} \cap \mathbb{Z}^n|$ can be computed with an algorithm, having the arithmetic complexity bound $$ O\bigl(d^{m + 4} \cdot \Delta^4 \cdot \log(\Delta) \bigr), $$ where $d = \dim(\mathcal{P})$, which outperforms the previous best known complexity bound $O(d^{m + O(1)} \cdot d^{\log_2(\Delta)})$. We do not directly compute the short rational generating function for $\mathcal{P} \cap \mathbb{Z}^n$, but compute its particular representation in the form of exponential series that depends on only one variable. The parametric versions of the above problem are also considered.
翻译:(一) $\mathb}(n+m)\timen n}$, $\mathb}(美元) 和$(A) = n美元, (二) $\mathcal{P} = * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *