One Class Slab Support Vector Machines (OCSSVM) have turned out to be better in terms of accuracy in certain classes of classification problems than the traditional SVMs and One Class SVMs or even other One class classifiers. This paper proposes fast training method for One Class Slab SVMs using an updated Sequential Minimal Optimization (SMO) which divides the multi variable optimization problem to smaller sub problems of size two that can then be solved analytically. The results indicate that this training method scales better to large sets of training data than other Quadratic Programming (QP) solvers.


翻译:与传统的SVM和1类SVM或甚至其他的1类分类者相比,一个级的Slab支持矢量机(OCSSVM)在某些分类问题的准确性方面比传统的SVM和1类SVM或甚至其他的1类分类者要好,本文件提出对1类Slab SVM的快速培训方法,使用更新的序列最小优化(SMO),将多变量优化问题分为小于2号尺寸的子问题,然后通过分析解决。结果显示,这种培训方法比其他夸大程序(QP)解答器(QP)的大型培训数据比例要好。

0
下载
关闭预览

相关内容

专知会员服务
115+阅读 · 2019年12月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年6月19日
Arxiv
1+阅读 · 2021年6月17日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员