Two non-intrusive uncertainty propagation approaches are proposed for the performance analysis of engineering systems described by expensive-to-evaluate deterministic computer models with parameters defined as interval variables. These approaches employ a machine learning based optimization strategy, the so-called Bayesian optimization, for evaluating the upper and lower bounds of a generic response variable over the set of possible responses obtained when each interval variable varies independently over its range. The lack of knowledge caused by not evaluating the response function for all the possible combinations of the interval variables is accounted for by developing a probabilistic description of the response variable itself by using a Gaussian Process regression model. An iterative procedure is developed for selecting a small number of simulations to be evaluated for updating this statistical model by using well-established acquisition functions and to assess the response bounds. In both approaches, an initial training dataset is defined. While one approach builds iteratively two distinct training datasets for evaluating separately the upper and lower bounds of the response variable, the other builds iteratively a single training dataset. Consequently, the two approaches will produce different bound estimates at each iteration. The upper and lower bound responses are expressed as point estimates obtained from the mean function of the posterior distribution. Moreover, a confidence interval on each estimate is provided for effectively communicating to engineers when these estimates are obtained for a combination of the interval variables for which no deterministic simulation has been run. Finally, two metrics are proposed to define conditions for assessing if the predicted bound estimates can be considered satisfactory.


翻译:提出了两种非侵入性不确定性传播方法,用于对以昂贵到评估确定型计算机模型描述的工程系统进行绩效分析,其参数定义为间隔变量。这些方法采用机械学习优化战略,即所谓的贝叶斯优化,以评价每间间隔变量各异不同时获得的一套可能答复的上限和下限;不评估所有间隙变量可能组合的响应功能而导致的缺乏知识,通过使用高斯进程回归模型对响应变量本身进行概率性描述来计算。为更新这一统计模型而选择少量的模拟,即所谓的贝叶斯优化,以评价一套通用反应变量的上限和下限。在这两种方法中,初步培训数据集被定义。虽然一种方法反复建立两种不同的培训数据集,以分别评估反应变量的上限和下限,而另一种方法则以迭代方式构建一个单一的培训数据集。因此,两种方法可以在每个高斯进程回归模型中产生不同的约束性估计数。在使用完善的假设中选择了少量和下限的模拟数据,如果从每期估算中可以有效地表达出一种准确的估算,那么,则在每次排序中,则在使用两种排序前的估算时,则以列表中以列表的形式表示。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
18+阅读 · 2019年1月16日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
6+阅读 · 2018年2月28日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员