We consider the estimation of treatment effects in settings when multiple treatments are assigned over time and treatments can have a causal effect on future outcomes or the state of the treated unit. We propose an extension of the double/debiased machine learning framework to estimate the dynamic effects of treatments, which can be viewed as a Neyman orthogonal (locally robust) cross-fitted version of $g$-estimation in the dynamic treatment regime. Our method applies to a general class of non-linear dynamic treatment models known as Structural Nested Mean Models and allows the use of machine learning methods to control for potentially high dimensional state variables, subject to a mean square error guarantee, while still allowing parametric estimation and construction of confidence intervals for the structural parameters of interest. These structural parameters can be used for off-policy evaluation of any target dynamic policy at parametric rates, subject to semi-parametric restrictions on the data generating process. Our work is based on a recursive peeling process, typical in $g$-estimation, and formulates a strongly convex objective at each stage, which allows us to extend the $g$-estimation framework in multiple directions: i) to provide finite sample guarantees, ii) to estimate non-linear effect heterogeneity with respect to fixed unit characteristics, within arbitrary function spaces, enabling a dynamic analogue of the RLearner algorithm for heterogeneous effects, iii) to allow for high-dimensional sparse parameterizations of the target structural functions, enabling automated model selection via a recursive lasso algorithm. We also provide guarantees for data stemming from a single treated unit over a long horizon and under stationarity conditions.


翻译:我们考虑在多种治疗被长期分配时,对多重治疗环境的处理效果进行估计,处理可以对未来的结果或处理单位的状况产生因果关系。我们提议扩大双偏差机器学习框架,以估计治疗的动态效应,这可以被视为Neyman orthogonal(当地稳健)交叉估计美元美元在动态处理制度中的交叉适用版本。我们的方法适用于一个非线性动态治疗模型的一般类别,称为结构内线性内线性模拟模型,并允许使用机器学习方法控制潜在的高度状态变量,但须有平均平方差保证,同时仍然允许对处理的结构性参数进行参数估计和构建信任间隔。这些结构参数可用于在参数下对任何目标动态政策进行非政策性评价,但须对数据生成过程实行半参数性限制。我们的工作基于一种循环式的剥离过程,典型为美元内线内直径直线内线内测算,并且在每个阶段设计一个强烈的直线内测值目标,从而使我们能够对结构特性进行参数性估测测测,同时提供弹性测测测测值内测值的参数框架。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月17日
Arxiv
0+阅读 · 2021年8月16日
Arxiv
0+阅读 · 2021年8月15日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员