A new framework is developed to intrinsically analyze sparsely observed Riemannian functional data. It features four innovative components: a frame-independent covariance function, a smooth vector bundle termed covariance vector bundle, a parallel transport and a smooth bundle metric on the covariance vector bundle. The introduced intrinsic covariance function links estimation of covariance structure to smoothing problems that involve raw covariance observations derived from sparsely observed Riemannian functional data, while the covariance vector bundle provides a rigorous mathematical foundation for formulating such smoothing problems. The parallel transport and the bundle metric together make it possible to measure fidelity of fit to the covariance function. They also play a critical role in quantifying the quality of estimators for the covariance function. As an illustration, based on the proposed framework, we develop a local linear smoothing estimator for the covariance function, analyze its theoretical properties, and provide numerical demonstration via simulated and real datasets. The intrinsic feature of the framework makes it applicable to not only Euclidean submanifolds but also manifolds without a canonical ambient space.
翻译:开发了一个新的框架, 以内在分析观测到的丽曼尼功能数据。 它包含四个创新组成部分: 一个框架独立的共变函数, 一个光滑的矢量捆绑叫做共变矢量捆绑, 一个平行的矢量捆绑, 一个平行的运输和一个对共变矢量捆绑的光滑的捆绑度量。 引入的内在共变函数将共变结构的估算链接到平滑问题中, 这些问题涉及从稀少观测到的里曼尼功能数据产生的原始共变体观测, 而共变矢量捆绑为制定这种平滑问题提供了一个严格的数学基础。 平行的运输和捆绑度测量使得能够测量适合共变函数的忠实性。 它们还在量化共变函数的估量质量方面发挥着关键作用。 作为示例, 我们根据拟议框架, 为共变函数开发一个本地的线性平滑度估计符, 分析其理论属性, 并通过模拟和真实的数据集提供数字演示。 框架的内在特征使得它不仅适用于欧几里德的子系, 而且还适用于没有卡尼基环境空间的多元性。