Projection algorithms learn a transformation function to project the data from input space to the feature space, with the objective of increasing the inter-class distance. However, increasing the inter-class distance can affect the intra-class distance. Maintaining an optimal inter-class separation among the classes without affecting the intra-class distance of the data distribution is a challenging task. In this paper, inspired by the Coulomb's law of Electrostatics, we propose a new algorithm to compute the equilibrium space of any data distribution where the separation among the classes is optimal. The algorithm further learns the transformation between the input space and equilibrium space to perform classification in the equilibrium space. The performance of the proposed algorithm is evaluated on four publicly available datasets at three different resolutions. It is observed that the proposed algorithm performs well for low-resolution images.
翻译:投影算法学会了将数据从输入空间投射到特性空间的转换功能,目的是增加阶级之间的距离。 但是, 增加阶级之间的距离会影响阶级之间的距离。 保持各等级之间最佳的阶级间分离而不影响数据分布的阶级间距离是一项具有挑战性的任务。 在本文中,在库伦姆电磁法的启发下,我们提出了一个新的算法,以计算各等级之间分离最理想的任何数据分布的平衡空间。 算法进一步学习了输入空间与平衡空间之间的转换,以便在平衡空间进行分类。 提议的算法的性能根据三种不同分辨率的四种公开数据集进行评估。 人们注意到,提议的算法对于低分辨率图像来说效果良好。