We introduce Texar, an open-source toolkit aiming to support the broad set of text generation tasks that transform any inputs into natural language, such as machine translation, summarization, dialog, content manipulation, and so forth. With the design goals of modularity, versatility, and extensibility in mind, Texar extracts common patterns underlying the diverse tasks and methodologies, creates a library of highly reusable modules, and allows arbitrary model architectures and algorithmic paradigms. In Texar, model architecture, inference, and learning processes are properly decomposed. Modules at a high concept level can be freely assembled and plugged in/swapped out. The toolkit also supports a rich set of large-scale pretrained models. Texar is thus particularly suitable for researchers and practitioners to do fast prototyping and experimentation. The versatile toolkit also fosters technique sharing across different text generation tasks. Texar supports both TensorFlow and PyTorch, and is released under Apache License 2.0 at https://www.texar.io.
翻译:我们引入了Texar,这是一个开放源码工具包,旨在支持将任何投入转换成自然语言的广泛文本生成任务,如机器翻译、总结、对话、内容处理等。Texar在设计模块化、多功能和在思想上可扩展等设计目标下,提取了不同任务和方法的共同模式,创建了高度可重复使用的模块库,并允许任意的模型架构和算法范式。在Texar,模型架构、推断和学习过程得到适当解析。高概念级别的模块可以自由组装和插入/插入。工具包还支持一套丰富的大规模预先培训模型。因此,Texar特别适合研究人员和从业人员进行快速编程和实验。多功能工具包还促进不同文本生成任务的技术共享。Texar支持TensorFlow和PyTorch,并在https://www.texar.io上根据阿帕契第2.0号许可发布。