Robots operating in households must find objects on shelves, under tables, and in cupboards. In such environments, it is crucial to search efficiently at 3D scale while coping with limited field of view and the complexity of searching for multiple objects. Principled approaches to object search frequently use Partially Observable Markov Decision Process (POMDP) as the underlying framework for computing search strategies, but constrain the search space in 2D. In this paper, we present a POMDP formulation for multi-object search in a 3D region with a frustum-shaped field-of-view. To efficiently solve this POMDP, we propose a multi-resolution planning algorithm based on online Monte-Carlo tree search. In this approach, we design a novel octree-based belief representation to capture uncertainty of the target objects at different resolution levels, then derive abstract POMDPs at lower resolutions with dramatically smaller state and observation spaces. Evaluation in a simulated 3D domain shows that our approach finds objects more efficiently and successfully compared to a set of baselines without resolution hierarchy in larger instances under the same computational requirement. We demonstrate our approach on a mobile robot to find objects placed at different heights in two 10m$^2 \times 2$m regions by moving its base and actuating its torso.
翻译:家庭操作的机器人必须在书架、表格和橱柜中找到物件。 在这样的环境下, 必须在3D规模上有效搜索, 应对有限的视野和搜索多天体的复杂性, 以3D 规模有效搜索至关重要 。 在这种环境下, 目标搜索有原则的方法经常使用部分可观测的 Markov 决策程序( POMDP) 作为计算搜索战略的基础框架, 但却限制2D 中的搜索空间。 在本文中, 我们提出了一个用于3D 区域中多点搜索的 POMDP 配方。 为了有效解决这个 POMDP, 我们提议了一个基于在线蒙特- Carlo 树搜索的多分辨率规划算法。 在这个方法中, 我们设计了一个新的基于 Octree 的信仰代表方法, 以获取不同分辨率目标对象的不确定性, 然后在较低分辨率和非常小的状态和观测空间中获取抽象的 POMDP 。 模拟的 3D 域评价显示, 我们的方法在相同的计算要求下, 在更大的情况下找到一组没有分辨率等级的基线, 。 我们用一个移动机器人在2M 和2M 基点 找到不同高度的物体, 。