For a given graph $G$, a maximum internal spanning tree of $G$ is a spanning tree of $G$ with maximum number of internal vertices. The Maximum Internal Spanning Tree (MIST) problem is to find a maximum internal spanning tree of the given graph. The MIST problem is a generalization of the Hamiltonian path problem. Since the Hamiltonian path problem is NP-hard, even for bipartite and chordal graphs, two important subclasses of graphs, the MIST problem also remains NP-hard for these graph classes. In this paper, we propose linear-time algorithms to compute a maximum internal spanning tree of cographs, block graphs, cactus graphs, chain graphs and bipartite permutation graphs. The optimal path cover problem, which asks to find a path cover of the given graph with maximum number of edges, is also a well studied problem. In this paper, we also study the relationship between the number of internal vertices in maximum internal spanning tree and number of edges in optimal path cover for the special graph classes mentioned above.
翻译:对于给定的图形 $G$, 最大内部横贯树为$G$, 最大内部横贯树为$G$, 最大内部横贯树( MIST) 的问题在于要找到给定图的最大内部横贯树。 MIST 的问题是汉密尔顿路径问题的一般化。 由于汉密尔顿路径问题是NP- 硬的, 即使是双面和圆形图, 两个重要的图表小类, MIST 问题对于这些图形类来说, 也仍然是坚硬的。 在本文中, 我们提出线性时间算法, 以计算一个最大内部的内跨树、 块图、 方图、 线性图、 链形图和 双面对位图。 最佳路径覆盖问题, 需要找到一个带有最大边缘数的给定图表路径覆盖, 也是研究周密的问题 。 在本文中, 我们还研究 最高内部横贯树的内脊和上述特殊图表类的最佳路径覆盖边缘的边缘数之间的关系 。