In mobile edge computing (MEC), task offloading can significantly reduce task execution latency and energy consumption of end user (EU). However, edge server (ES) resources are limited, necessitating efficient allocation to ensure the sustainable and healthy development for MEC systems. In this paper, we propose a dynamic pricing mechanism based near-optimal resource allocation for elastic edge offloading. First, we construct a resource pricing model and accordingly develop the utility functions for both EU and ES, the optimal pricing model parameters are derived by optimizing the utility functions. In the meantime, our theoretical analysis reveals that the EU's utility function reaches a local maximum within the search range, but exhibits barely growth with increased resource allocation beyond this point. To this end, we further propose the Dynamic Inertia and Speed-Constrained particle swarm optimization (DISC-PSO) algorithm, which efficiently identifies the near-optimal resource allocation. Comprehensive simulation results validate the effectiveness of DISC-PSO, demonstrating that it significantly outperforms existing schemes by reducing the average number of iterations to reach a near-optimal solution by 92.11\%, increasing the final user utility function value by 0.24\%, and decreasing the variance of results by 95.45\%.
翻译:暂无翻译